?

HydroMinder
 Models 561 \& 562

PACKAGECONTAINS:
. Proportioner (Model 562 includes siphon breaker) 3. Float with chain
4. Supply tube with foot valve - 9 f
5. Discharge tube
6. Metering tip kit

Hydro Systems manufactures quality chemical proportioners. Please use this equipment carefully and observe all

WEAR	n working in the vicinity of all chemicals, filling or emptying
ALWAYS	observe safety and handling instructions of the chemical manufacturers. direct discharge away from you or other persons or into approved containers. dispense cleaners and chemicals in accordance with manufacturer's instructions. exercise CAUTION when maintaining your equipment. Re-assemble equipment according to instruction procedures. Be sure all components are firmly screwed or latched into position.
CLEAN	equipment after each use in accordance with instruction sheet.
ATTACH	only to tap water outlets (85 PSI maximum).

INSTALLATION:

1. Select a metering tip (see next section) and install it into the suction stub on the eductor body.
2. Attach the end of the discharge tube with the clamp and flooding ring to the discharge barb on the eductor. On Model 561 (without siphon breaker), you may want to drill a small hole (1/8" or $1 / 4^{\prime \prime}$ "ID) eductor. This will allow the discharge tube to drain after each cycle.
3. Mount the unit in a level position on the side of a reservoir. If necessary, reposition or remove the mounting bracket.
4. Insert foot valve end of suction tube into concentrate container. Cut the tube to the length required so that the tube goes just to the bottom of the concentrate container. (Level of concentrate in the container must be below the discharge point of the installed unit, or the HydroMinder will continue to siphon concentrate after it is turned off.)
5. Slide the open end of the suction tube over the suction stub.
6. Adjust chain length to position float at the desired highest level of solution. To prevent foaming, be certain that the point of discharge will be below the solution level at its lowest point Be sure to take this into account whe2 are designed to shut off slowly to help reduce water hammer. overflow. Be sure float mechanism is not hampered by water level to prevent inadvertent tank solution. It may be necessary to baffle the float from the discharge in order for the unit to work properly,
7. Install minimum $3 / 4$ "ID hose to the HydroMinder valve. Minimum 25 PSI pressure (flowing water) required at valve inlet.
OPERATION:
Open the water supply valve When the solution in the reservoir reaches the level set by the float, the valve will close. This will stop the water flow and siphoning of concentrate. When withdrawal of solution from the reservoir causes the level to drop, the valve will open and the reservoir will be refilled to the previous level. This cycle will be repeated automatically until the supply of concentrate reservoir is drained, or when the unit is not in use.

Tip Color	Nominal Diameter	Approx. Dilution Ratio at 40 PSI, Water-thin Viscosity (1.0 cp)	For reference:Ounces/gallon	
No tip	Open connector	6.5:1		
Grey	. 128	12:1		
Black	. 098	20:1	8:1 =	16 oz .gal.
Beige	. 070	38:1		
Red	. 052	68:1	16:1 =	8 oz .gal.
White	. 043	95:1		
Blue	. 040	105:1	32:1 =	4 oz . gal.
Tan	. 035	130:1		
Green	. 02	180:1	64:1 =	2 oz ./gal.
Orange	. 025	270:1		
Brown	. 023	310:1	128:1 $=$	1 oz./gal
Yellow Purple	. 020	380:1 61	256:1 =	1⁄20z./gal.
Pink	. 010	1200:1		

MEASUREMENT OF CONCENTRATION:
You can determine the dispensed water-to-product ratio for any metering tip size and product viscosity. All that is required is to operate the primed dispenser for a minute or so and note two things: the amount of dispensed water/ $\begin{aligned} & \text { product mixture, and the amount } \\ & \text { is then calculated as follows: } \\ & \text { Dilution }\end{aligned}(\mathrm{X})=$ Amount of Mixed Solution - Amount of Concentrate Drawn

Dilution ratio, then, equals X parts water to one part concentrate ($\mathrm{X}: 1$). If the test does not yield the desired ratio, choose
 your them.
PROBLEMSOLVING:

Problem	Cause	Remedy
1. No discharge	a. No water b. Defective magnetic valve assembly c. Excessive water pressure	a. Open water inlet valve b. Replace assembly c. Install regulator if pressure exceeds 85 PSI static
2. No concentrate draw	a. Clogged foot valve strainer b. Metering tip or eductor clogged c. Low water pressure d. Discharge tube or flooding ring not in place	a. Clean or replace b. Clean or replace* c. Minimum 25 PSI flowing required d. Reposition tube, or replace tube if flooding ring misplaced
3. Failure of unit to turn off	a. Valve parts dirty or defective b. Magnet not returning c. Clogged valve orifice d. Diaphram stretched	a. Clean or replace* b. Free magnet/replace spring c. Clean or replace* d. Replace
4. Backflow into concentrate	a. Mixed solution being siphoned back into concentrate container	a. Replace foot valve Drill antisiphon hole in discharge hose (see installation instructions step \#2). Add or replace siphon breaker

* In hard water areas, scale may form at the discharge end of the eductor or valve orifice. Be sure the pilot holes in the diaphram are clear. Scale may be removed by soaking the scaled part in a descaling or deliming solution. Alternately, the descaling solution may be educted through the unit allowed to sit, then flushed prior to use of the unit with concentrate. Be sure descaling solution does not discharge into primary holding tank

