HydroMinder Model 564: Parts Diagram and List

NuOlo

. Supply tube with foot valve -9 ft .
5. Discharge tube assembly - 2 ft .
6. Metering tip ki

Product information sheet

THANK YOU FOR CHOOSING OUR PRODUCTS Hydro Systems manufactures quality chemical proportioners. Please use this equipment carefully and observe all warnings and cautions.	
WEAR	protective clothing and eyewear when working in the vicinity of all chemicals, filling or emptying equipment or changing metering tips.
ALWAYS	observe safety and handling instructions of the chemical manufacturers. direct discharge away from you or other persons or into approved containers. dispense cleaners and chemicals in accordance with manufacturer's instructions. exercise CAUTION when maintaining your equipment. RExercise CAUTION when maintaining your equipment.e-assemble equipment according to instruction procedures. Be sure all components are firmly screwed or latched into position.
CLEAN	equipment after each use in accordance with instruction sheet.
ATTACH	only to tap water outlets (85 PSI maximum).

NSTALLATION:

1. Select a metering tip (see next page) and install it into the suction stub on the eductor body.
2. Attach the end of the discharge tube with the clamp and flooding ring to the discharge barb on the eductor. On models without siphon breakers, you may want to drill a small hole (1/8" or $14^{\prime \prime \prime} \mathrm{ID}$) in the discharge tube, above he highest solution level point and below the discharge end of the eductor. This will allow the discharge tube to drain after each cycle.
3. Mount the unitin a level position on the side of a reservoir. Reposition or remove bracket, if supplied, if necessary.

Insert foot valve end of suction tube into concentrate container. Cut tube to the length required so that tube goes just to the bottom of the concentrate container. (Level of concentrate in the container must be below the discharge point of the installed unit, or the HydroMinder will continue to siphon concentrate after it is turned off.)
5. Slide the open end of the suction tube over the suction stub
6. Adjust chain length to position float at the desired highest level of solution. To prevent foaming, be certain that the point of discharge will be below the solution level at its lowest point. NOTE: The high volume HydroMinder Models 563 and 564 are designed to shut off slowly to help reduce water hammer Be sure to take this into account when setting the high water level to prevent inadvertent tank overflow. Be sure float mechanism is not hampered by water turbulence caused by discharging solution. It may be necessary to baffle the float from the discharge in order for the unit to work properly
7. Install minimum 1 -inch water line to the HydroMinder valve. Minimum 25 PSI pressure of flowing water required at valve inlet. A supply shut-off valve should be installed ahead of the HydroMinder

OPERATION:
Open the water supply valve. When the solution in the reservoir reaches the level set by the float, the valve will close This will stop the water flow and siphoning of concentrate. When withdrawal of solution from the reservoir causes the level to drop, the valve will open and the reservoir will be refilled to the previous level. This cycle will be repeated automatically until the supply of concentrate is depleted. The water supply valve should be fully closed when changing metering tips, when reservoir is drained, or when the unit is not in use

METERING TIP SELECTION
Final dilution of concentrate is related to both the size of the metering tip opening and the viscosity of the liquid being siphoned. If product viscosity is noticeably greater than that of water, consult the procedure for Measurement of Concentration to achieve your desired water-to-product ratio. For water-thin products, consult the chart below.

Tip Color	Nominal Diameter	Dilution Ratio at 40 PSI, Water-thin Viscosity (1.0 CP)	For reference: Ounces/gallon	
No tip	Open connector	8:1		
Grey	. 128	15:1	8:1 =	16 oz./gal
Black	. 098	25:1		
Beige	. 070	45:1	16:1 =	8 oz./gal.
Red	. 052	80:1		
White	. 043	110:1	32:1 =	4 oz./gal.
Blue	. 040	120:1		
Tan	. 035	160:1	64:1 $=$	2 oz./gal.
Green	. 02	240:1		
Orange	. 025	330:1	128:1 =	1 oz ./gal.
Brown	. 023	390:1		
Yellow	. 020	460:1	256:1 =	1/20z./gal.
Purple	. 014	660:1		
Pink	. 010	1200:1		

MEASUREMENT OF CONCENTRATION:
You can determine the dispensed water-to-product ratio for any metering tip size and product viscosity. All that is required is to operate the primed dispenser for a minute or so and note wo the the and ount of dispensed wate culated as follows

$$
\text { Dilution }(X)=\frac{\text { Amount of Mixed Solution - Amount of Concentrate Drawn }}{\text { Amount of Concentrate Drawn }}
$$

Dilution ratio, then, equals X parts water to one part concentrate ($\mathrm{X}: 1$). If the test does not yield the desired ratio choose a different tip and repeat the test. Alternative methods to this test are 1) pH (using litmus paper), and 2) titration. Contact your concentrate supplier for further information on these alternative methods and the material required to perform them.

PROBLEM SOLVING:

Problem	Cause	Remedy
1. No discharge	a. No water b. Defective magnetic valve assembly c. Excessive water pressure	a. Open water inlet valve b. Replace assembly c. Install regulator if pressure exceeds 85 PSI static
2. No concentrate draw	a. Clogged foot valve strainer b. Metering tip or eductor clogged c. Low water pressure d. Discharge tube or flooding ring not in place	a. Clean or replace b. Clean or replace* c. Minimum 25 PSI flowing required d. Reposition tube, or replace tube if flooding ring misplaced
3. Failure of unit to turn off	a. Valve parts dirty or defective b. Magnet not returning c. Clogged valve orifice d. Diaphram stretched	a. Clean or replace* b. Free magnet/replace spring c. Clean or replace* d. Replace
4. Backflow into concentrate	a. Mixed solution being siphoned back into concentrate container	a. Replace foot valve or drill antisiphon hole in discharge hose (see installation instructions step \#2). Add or replace siphon breaker
* In hard water a holes in the dia liming solution. flushed prior to	ale may form at the discharge end are clear. Scale may be removed tely, the descaling solution may	ductor or valve orifice. Be sure the pilot ng the scaled part in a descaling or dethrough the unit, allowed to sit, then solution does not discharge into primary

liming solution. Alternately, the descaling solution may be educted through the unit, allowed to sit, then tior to use of the unit with concentrate. Be sure descaling solution does not discharge into primary holding tank

Key Part No. Description
$1 \quad 10091907$ actuator assembly
10091661 valve
valve
10091906 diaphragm replacementkit
560180 bushing ($3 / 4 \times$
560190 nipple ($3 / 4 \times 2$ PVC)
560210 elbow (3/4PVC)
$\begin{array}{ll}560220 & \text { elbow (} 3 / 4 \times 6 \text { PVC) } \\ 507600 & \text { nipple } \\ \text { siphon breaker }\end{array}$

